Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

trans-Carbonyliodotris(triphenyl-stibine- $\kappa S b$)rhodium(I)

Stefanus Otto ${ }^{\mathbf{a} *} \boldsymbol{\dagger}$ and Andreas Roodt ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of the Free State, PO Box 339, Bloemfontain 9300, South Africa, and ${ }^{\mathbf{b}}$ Department of Chemistry, Rand Afrikaans University,
PO Box 524, Johannesburg 2006, South Africa
Correspondence e-mail: fanie.otto@sasol.com

Received 29 August 2002
Accepted 11 October 2002
Online 8 November 2002
The crystal structure of the title compound, $\left[\mathrm{RhI}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Sb}\right)_{3^{-}}\right.$ (CO)], represents a rare example of a crystallographically characterized five-coordinate $\mathrm{Rh}^{\mathrm{I}}-\mathrm{SbPh}_{3}$ complex. The compound crystallizes with the $\mathrm{I}-\mathrm{Rh}-\mathrm{CO}$ core on a threefold rotation axis, with three crystallographically equivalent triphenylstibine ligands. Selected geometric parameters are: $\mathrm{Rh}-\mathrm{I}=2.7159$ (8), $\mathrm{Rh}-\mathrm{Sb}=2.5962$ (4), $\mathrm{Rh}-\mathrm{C}_{\mathrm{CO}}=$ 1.825 (6) and $\mathrm{C}_{\mathrm{CO}}-\mathrm{O} 1.153$ (6) \AA, and $\mathrm{Sb}-\mathrm{Rh}-\mathrm{I}=$ $89.374(10)$ and $\mathrm{Sb}-\mathrm{Rh}-\mathrm{C}_{\mathrm{CO}}=90.626(10)^{\circ}$. The cone angle of the SbPh_{3} ligand was determined as 137°, according to the Tolman model.

Comment

Although stibine complexes of Rh have been known since the 1950s (Vallarino, 1957), surprisingly few crystallographic studies of these complexes have been reported to date. As has been pointed out in earlier investigations (Ugo et al., 1969; Otto \& Roodt, 2002), several experimental problems may arise during the characterization of these complexes, making X-ray crystallography the method of choice. As part of our systematic investigation of these systems (Otto et al., 2002; Otto \& Roodt, 2002), we obtained single crystals of trans-carbonyliodotris(triphenylstibine- $\kappa S b$)rhodium(I), (I), and the crystal structure is presented here.

(I)

Compound (I) (Fig. 1) crystallizes with an almost perfect trigonal-bipyramidal geometry in the trigonal space group $P \overline{3}$. The packing in the crystal is governed by van der Waals forces alone; no significant intermolecular interactions are observed. The $\mathrm{OC}-\mathrm{Rh}-\mathrm{I}$ core is situated along the threefold rotation axis, resulting in three crystallographically equivalent SbPh_{3}

[^0]ligands around the Rh atom with angles of exactly 120°. Accordingly, the $\mathrm{OC}-\mathrm{Rh}-\mathrm{I}$ core is exactly linear and the $\mathrm{C} 1-\mathrm{Rh}-\mathrm{Sb}$ and $\mathrm{I}-\mathrm{Rh}-\mathrm{Sb}$ angles are close to 90°, at 90.626 (10) and $89.374(10)^{\circ}$, respectively.

An $\mathrm{I}-\mathrm{Rh}-\mathrm{Sb}-\mathrm{C} 11$ torsion angle of 175.77 (10) ${ }^{\circ}$ indicates phenyl ring 1 ($\mathrm{C} 11-\mathrm{C} 16$) points almost directly towards the CO moiety, whereas rings 2 (C21-C26) and 3 (C31-C36) are staggered with respect to the $\mathrm{Rh}-\mathrm{I}$ bond, with $\mathrm{I}-\mathrm{Rh}-\mathrm{Sb}-$ C 21 and $\mathrm{I}-\mathrm{Rh}-\mathrm{Sb}-\mathrm{C} 31$ torsion angles of -63.88 (11) and $57.89(9)^{\circ}$, respectively. These specific geometric orientations may account for the observation that the SbPh_{3} ligands are marginally displaced towards the larger I ligand.

Based on molecular models, Tolman (1977) predicted that increasing the $M-L$ or $L-\mathrm{C}$ (M is a metal and L is a ligand) bond lengths by $0.1 \AA$ (for ligands containing donor atoms other than P) would result in a $3-5^{\circ}$ decrease in the cone angle of the ligand. In this regard, the effective cone angle, as defined earlier (Otto et al., 2000), utilizes the observed $\mathrm{Rh}-\mathrm{Sb}$ bond distance, and the cone angle for SbPh_{3} in (I) was calculated as 137°. This value is in excellent agreement with both Tolman's prediction and the average of 139° for six independent SbPh_{3} ligands obtained during a previous study (Otto \& Roodt, 2002).

In Table 2, compound (I) is compared with related trans$\left[\operatorname{Rh}(X) \mathrm{CO}\left(L \mathrm{Ph}_{3}\right)_{n}\right](n=2$ or $3 ; L$ is Sb or P$)$ complexes, illustrating the effect of different X ligands on the geometric parameters of four- and five-coordinate SbPh_{3} complexes of Rh^{I}. From these data, it is clear that the $\mathrm{Rh}-\mathrm{Sb}$ bond length of 2.5962 (4) \AA in (I) is comparable with the value of

Figure 1
A view of the structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity. The complex is numbered with the first digit of the phenyl rings referring to the number of the ring (1-3) and the second digit referring to the number of the atom within the ring (1-6) [symmetry codes: (i) $-x+y, 1-x, z$; (ii) $1-y, x-y+1, z]$.
2.5981 (5) \AA found in the analogous five-coordinate Cl complex, but is slightly longer than the values of 2.568 (2) \AA in the acetyl complex and 2.5655 (2) \AA in the four-coordinate Cl complex. Not many Rh-I bond distances are known for complexes of this kind, but the $\mathrm{Rh}-\mathrm{I}$ bond length of 2.7159 (8) \AA in (I) is considerably longer than the value of 2.683 (1) A determined for trans- $\left[\mathrm{RhI}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Basson et al., 1990). This may be a result of the increased steric crowding in the five-coordinate complex or the increased electron density introduced by the three SbPh_{3} ligands. A similar observation was made in relation to the $\mathrm{Rh}-\mathrm{Cl}$ bond distances of the four- and five-coordinate triphenylstibine complexes (Otto \& Roodt, 2002) listed in Table 2, where an elongation from 2.315 (3) to 2.4094 (18) \AA was induced by the increase in coordination number.

Experimental

$\mathrm{NaI}(17 \mathrm{mg}, 0.113 \mathrm{mmol})$ was added to a nitrogen-flushed solution of the $\left[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{CO})_{2}\right]_{2}$ dimer $(20 \mathrm{mg}, 0.051 \mathrm{mmol})$ in acetone $(5 \mathrm{ml})$. The reaction medium immediately took on a deep-red colour and was stirred for a further 5 min after addition. Stirring was then discontinued and $\mathrm{SbPh}_{3}(126 \mathrm{mg}, 0.357 \mathrm{mmol})$ dissolved in acetone (7 ml) was added carefully so as to avoid the least disturbance to the solution. Deep-red rectangular crystals of (I) soon started separating from the solution; yields $>80 \%$ based on Rh were obtained. Spectroscopic analysis, IR (KBr, v): $1977 \mathrm{~cm}^{-1}$ (CO); IR (dichloromethane, ν): $1978 \mathrm{~cm}^{-1}$ (CO).

Crystal data

$\left[\operatorname{RhI}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Sb}\right)_{3}(\mathrm{CO})\right]$
$M_{r}=1316.97$
Trigonal, $P \overline{3}$
$a=14.462(2) \AA$
$c=13.902(3) \AA$
$V=2518.2(7) \AA^{3}$
$Z=2$
$D_{x}=1.737 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.493, T_{\text {max }}=0.815$
24940 measured reflections

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Rh}-\mathrm{C} 1$	$1.825(6)$	$\mathrm{Sb}-\mathrm{C} 21$	$2.143(3)$
$\mathrm{Rh}-\mathrm{Sb}$	$2.5962(4)$	$\mathrm{Sb}-\mathrm{C} 31$	$2.129(3)$
$\mathrm{Rh}-\mathrm{I}$	$2.7159(8)$	$\mathrm{C} 1-\mathrm{O}$	$1.153(6)$
$\mathrm{Sb}-\mathrm{C} 11$	$2.140(3)$		
$\mathrm{C} 1-\mathrm{Rh}-\mathrm{Sb}$	$90.626(10)$	$\mathrm{C} 21-\mathrm{Sb}-\mathrm{C} 31$	$96.21(12)$
$\mathrm{Sb}-\mathrm{Rh}-\mathrm{I}$	$89.374(10)$	$\mathrm{C} 11-\mathrm{Sb}-\mathrm{Rh}$	$112.73(9)$
$\mathrm{C} 11-\mathrm{Sb}-\mathrm{C} 21$	$99.57(12)$	$\mathrm{C} 21-\mathrm{Sb}-\mathrm{Rh}$	$124.39(8)$
$\mathrm{C} 11-\mathrm{Sb}-\mathrm{C} 31$	$101.04(12)$	$\mathrm{C} 31-\mathrm{Sb}-\mathrm{Rh}$	$118.84(8)$
			$57.89(9)$
$\mathrm{I}-\mathrm{Rh}-\mathrm{Sb}-\mathrm{C} 11$	$175.77(10)$	$\mathrm{I}-\mathrm{Rh}-\mathrm{Sb}-\mathrm{C} 31$	
$\mathrm{I}-\mathrm{Rh}-\mathrm{Sb}-\mathrm{C} 21$	$-63.88(11)$		

Table 2
Comparative X-ray data for trans- $\left[\mathrm{Rh}(X) \mathrm{CO}\left(L \mathrm{Ph}_{3}\right)_{n}\right]$ complexes.

X	n	L	$\mathrm{Rh}-\mathrm{C} 1(\AA)$	$\mathrm{Rh}-L(\AA)$	$\mathrm{Rh}-X(\AA)$	Reference
Cl	2	Sb	$1.797(13)$	$2.5655(2)$	$2.315(3)$	a
Cl	3	Sb	$1.875(7)$	$2.5981(5)$	$2.4094(18)$	a
I	2	P	$1.81(1)$	$2.326(2)$	$2.683(1)$	b
I	3	Sb	$1.825(6)$	$2.5962(4)$	$2.759(8)$	c
COCH_{3}	3	Sb	$1.91(2)$	$2.568(2)$	$2.095(16)$	d

References: (a) Otto \& Roodt (2002); (b) Basson et al. (1990); (c) this work; (d) Lamprecht et al. (1986).
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Financial assistance from the South African NRF, and from the Research Funds of the Rand Afrikaans University and the University of the Free State, is gratefully acknowledged. The authors thank the Chemical Centre of the University of Lund, Sweden, for the use of their diffractometer for the data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1526). Services for accessing these data are described at the back of the journal.

References

Basson, S. S., Leipoldt, J. G. \& Roodt, A. (1990). Acta Cryst. C46, 142-143.
Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.
Lamprecht, G. J., Van Biljon, C. P. \& Leipoldt, J. G. (1986). Inorg. Chim. Acta, 119, L1-L4.
Otto, S., Mzamane, S. N. \& Roodt, A. (2002). Modern Coordination Chemistry, The Legacy of Joseph Chatt, edited by G. J. Leigh \& N. Winterton, pp. 328339. London: Royal Society of Chemistry.

Otto, S. \& Roodt, A. (2002). Inorg. Chim. Acta, 331, 199-207.
Otto, S., Roodt, A. \& Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
Ugo, R., Bonati, F. \& Cenini, S. (1969). Inorg. Chim. Acta, 3, 220-222.
Vallarino, L. (1957). J. Chem. Soc. pp. 2287-2292.

[^0]: \dagger Current address: Sasol Technology Research and Development, Sasol, PO Box 1, Sasolburg 1947, South Africa.

